Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Cytometry A ; 2024 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-38634730

RESUMO

We report the development of an optimized 50-color spectral flow cytometry panel designed for the in-depth analysis of the immune system in human blood and tissues, with the goal of maximizing the amount of information that can be collected using currently available flow cytometry platforms. We established and tested this panel using peripheral blood mononuclear cells (PBMCs), but included CD45 to enable its future use for the analysis of human tissue samples. The panel contains lineage markers for all major immune cell subsets, and an extensive set of phenotyping markers focused on the activation and differentiation status of the T cell and dendritic cell (DC) compartment. We outline the biological insight that can be gained from the simultaneous measurement of such a large number of proteins and propose that this approach provides a unique opportunity for the comprehensive exploration of the immune status in human samples with a limited number of cells. Of note, we tested the panel to be compatible with cell sorting for further downstream applications. Furthermore, to facilitate the wide-spread implementation of such a panel across different cohorts and samples, we established a trimmed-down 45-color version which can be used with different spectral cytometry platforms. Finally, to generate this panel, we utilized not only existing panel design guidelines, but also developed new metrics to systematically identify the optimal combination of 50 fluorochromes and evaluate fluorochrome-specific resolution in the context of a 50-color unmixing matrix.

2.
Immunol Rev ; 2024 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-38520075

RESUMO

Mucosal-associated invariant T (MAIT) cells have a semi-invariant T-cell receptor that allows recognition of antigen in the context of the MHC class I-related (MR1) protein. Metabolic intermediates of the riboflavin synthesis pathway have been identified as MR1-restricted antigens with agonist properties. As riboflavin synthesis occurs in many bacterial species, but not human cells, it has been proposed that the main purpose of MAIT cells is antibacterial surveillance and protection. The majority of human MAIT cells secrete interferon-gamma (IFNg) upon activation, while some MAIT cells in tissues can also express IL-17. Given that MAIT cells are present in human barrier tissues colonized by a microbiome, MAIT cells must somehow be able to distinguish colonization from infection to ensure effector functions are only elicited when necessary. Importantly, MAIT cells have additional functional properties, including the potential to contribute to restoring tissue homeostasis by expression of CTLA-4 and secretion of the cytokine IL-22. A recent study provided compelling data indicating that the range of human MAIT cell functional properties is explained by plasticity rather than distinct lineages. This further underscores the necessity to better understand how different signals regulate MAIT cell function. In this review, we highlight what is known in regards to activating and inhibitory signals for MAIT cells with a specific focus on signals relevant to healthy and inflamed tissues. We consider the quantity, quality, and the temporal order of these signals on MAIT cell function and discuss the current limitations of computational tools to extrapolate which signals are received by MAIT cells in human tissues. Using lessons learned from conventional CD8 T cells, we also discuss how TCR signals may integrate with cytokine signals in MAIT cells to elicit distinct functional states.

3.
Cell Mol Gastroenterol Hepatol ; 17(1): 119-130, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-37714427

RESUMO

BACKGROUND & AIMS: Inflammatory bowel disease (IBD) causes a marked increase in the number of T cells in the intestinal mucosa. Debate exists about whether these excess cells arise from local clonal proliferation or recruitment from the periphery. METHODS: CD8+ T cells were sorted from colon biopsy specimens and blood for T-cell receptor (TCR) ß-chain sequencing. Biopsy specimens from inflamed or uninflamed colon from ulcerative colitis or Crohn's disease cohorts were compared with colon biopsy specimens from people without IBD, as well as with autologous blood α4ß7+, α4ß7- effector/memory, terminal effector/memory CD45RA+ T cell, and mucosal-associated invariant T-cell CD8 subpopulations. RESULTS: CD8 TCR diversity in mucosa and blood did not correlate with inflammation. Repertoire overlap between any 2 distinct locations of a given person's colon was consistently high, although often lower between inflamed and uninflamed sites. CD8 TCR repertoires overlapped between the colon and each peripheral blood subpopulation studied, with the highest overlap seen for integrin α4ß7+ T cells. Inflamed tissue consistently overlapped more than uninflamed tissue with each blood subpopulation. CONCLUSIONS: CD8 T-cell clones are spread homogenously throughout the length of the colon. Although TCR repertoire overlap is greater within than between inflamed and uninflamed colon segments, a similar TCR diversity in both argues against local clonal expansion being the main source of excess cytotoxic T cells in inflamed mucosa. Rather, the increased TCR overlap observed between blood and inflamed mucosa supports the significance of T-cell trafficking in IBD pathogenesis, particularly concerning α4ß7+ T-cell populations.


Assuntos
Colite Ulcerativa , Doença de Crohn , Doenças Inflamatórias Intestinais , Humanos , Doenças Inflamatórias Intestinais/patologia , Doença de Crohn/patologia , Receptores de Antígenos de Linfócitos T alfa-beta/genética
4.
PLoS One ; 18(11): e0285918, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37922286

RESUMO

OBJECTIVES: Mucosal-Associated Invariant T (MAIT) cells are T cells with a semi-invariant T cell receptor (TCR), recognizing riboflavin precursors presented by a non-polymorphic MR1 molecule. As these precursors are produced by the gut microbiome, we characterized the frequency, phenotype and clonality of MAIT cells in human colons with and without Crohn's disease (CD). METHODS: The transcriptome of MAIT cells sorted from blood and intestinal lamina propria cells from colectomy recipients were compared with other CD8+ T cells. Colon biopsies from an additional ten CD patients and ten healthy controls (HC) were analyzed by flow cytometry. TCR genes were sequenced from individual MAIT cells from these biopsies and compared with those of MAIT cells from autologous blood. RESULTS: MAIT cells in the blood and colon showed a transcriptome distinct from other CD8 T cells, with more expression of the IL-23 receptor. MAIT cells were enriched in the colons of CD patients, with less NKG2D in inflamed versus uninflamed segments. Regardless of disease, most MAIT cells expressed integrin α4ß7 in the colon but not in the blood, where they were enriched for α4ß7 expression. TCR sequencing revealed heterogeneity in the colon and blood, with few public sequences associated with cohorts. CONCLUSION: MAIT cells are enriched in the colons of CD patients and disproportionately express molecules (IL-23R, integrin α4ß7) targeted by CD therapeutics, to suggest a pathogenic role for them in CD. Public TCR sequences were neither common nor sufficiently restricted to a cohort to suggest protective or pathogenic antigen-specificities.


Assuntos
Doença de Crohn , Células T Invariantes Associadas à Mucosa , Humanos , Receptores de Antígenos de Linfócitos T alfa-beta/genética , Receptores de Antígenos de Linfócitos T alfa-beta/metabolismo , Doença de Crohn/genética , Doença de Crohn/metabolismo , Antígenos de Histocompatibilidade Classe I/genética , Receptores de Antígenos de Linfócitos T/metabolismo , Colo/metabolismo
5.
bioRxiv ; 2023 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-38168221

RESUMO

We report the development of an optimized 50-color spectral flow cytometry panel designed for the in-depth analysis of the immune system in human blood and tissues, with the goal of maximizing the amount of information that can be collected using currently available flow cytometry platforms. We established and tested this panel using peripheral blood mononuclear cells (PBMCs), but included CD45 to enable its use for the analysis of human tissue samples. The panel contains lineage markers for all major immune cell subsets, and an extensive set of phenotyping markers focused on the activation and differentiation status of the T cell and dendritic cell (DC) compartment. We outline the biological insight that can be gained from the simultaneous measurement of such a large number of proteins and propose that this approach provides a unique opportunity for the comprehensive exploration of the immune status in tissue biopsies and other human samples with a limited number of cells. Of note, we tested the panel to be compatible with cell sorting for further downstream applications. Furthermore, to facilitate the wide-spread implementation of such a panel across different cohorts and samples, we established a trimmed-down 45-color version which can be used with different spectral cytometry platforms. Finally, to generate this panel, we utilized not only existing panel design guidelines, but also developed new metrics to systematically identify the optimal combination of 50 fluorochromes and evaluate fluorochrome-specific resolution in the context of a 50-color unmixing matrix.

6.
Nature ; 605(7911): 728-735, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35545675

RESUMO

Immunotherapies have achieved remarkable successes in the treatment of cancer, but major challenges remain1,2. An inherent weakness of current treatment approaches is that therapeutically targeted pathways are not restricted to tumours, but are also found in other tissue microenvironments, complicating treatment3,4. Despite great efforts to define inflammatory processes in the tumour microenvironment, the understanding of tumour-unique immune alterations is limited by a knowledge gap regarding the immune cell populations in inflamed human tissues. Here, in an effort to identify such tumour-enriched immune alterations, we used complementary single-cell analysis approaches to interrogate the immune infiltrate in human head and neck squamous cell carcinomas and site-matched non-malignant, inflamed tissues. Our analysis revealed a large overlap in the composition and phenotype of immune cells in tumour and inflamed tissues. Computational analysis identified tumour-enriched immune cell interactions, one of which yields a large population of regulatory T (Treg) cells that is highly enriched in the tumour and uniquely identified among all haematopoietically-derived cells in blood and tissue by co-expression of ICOS and IL-1 receptor type 1 (IL1R1). We provide evidence that these intratumoural IL1R1+ Treg cells had responded to antigen recently and demonstrate that they are clonally expanded with superior suppressive function compared with IL1R1- Treg cells. In addition to identifying extensive immunological congruence between inflamed tissues and tumours as well as tumour-specific changes with direct disease relevance, our work also provides a blueprint for extricating disease-specific changes from general inflammation-associated patterns.


Assuntos
Neoplasias , Humanos , Imunoterapia , Inflamação , Neoplasias/patologia , Linfócitos T Reguladores , Microambiente Tumoral
7.
Immunohorizons ; 6(3): 211-223, 2022 03 10.
Artigo em Inglês | MEDLINE | ID: mdl-35273097

RESUMO

Successful treatment of inflammatory bowel disease (IBD) with the anti-integrin α4ß7 mAb vedolizumab suggests that interaction of this integrin with addressin mucosal addressin cell adhesion molecule-1 (MAdCAM-1) is central to IBD pathogenesis. Although this was presumed to be due to an inhibition of lymphocyte trafficking to the gut, as has been observed in animal models, we report no depletion of CD4 T cells from the colonic mucosa as a consequence of vedolizumab treatment in humans, regardless of efficacy. Likewise, no upregulation of alternative trafficking mechanisms was observed as a consequence of therapy to suggest that this homeostasis is maintained in patients by a mechanistic escape from inhibition. Instead, we explore a role for MAdCAM-integrin interaction as a gut-specific costimulatory signal, demonstrating that it can replace CD28 ligation to activate human T cells in vitro. This activation through integrin α4ß7 is mediated through the gut-restricted molecule MAdCAM-1, and it cannot be replicated by matrix molecules or proteins that bind other integrins. A detailed analysis of mRNA expression by human T cell subsets following suboptimal TCR stimulation in the presence or absence of CD28 versus MAdCAM-1 costimulation reveals marked similarity in the effect that these two signals have upon T cells, with temporal or quantitative differences detected in the expression of cytokines associated with Th17 cells or pyogenic inflammation. Thus, we describe an alternative costimulatory pathway for T cells in the intestine, through ligation of integrin α4ß7 by MAdCAM-1, which may explain the therapeutic efficacy of vedolizumab and have implications concerning the treatment of IBD.


Assuntos
Doenças Inflamatórias Intestinais , Integrinas , Animais , Antígenos CD28/metabolismo , Linfócitos T CD4-Positivos/metabolismo , Expressão Gênica , Humanos , Doenças Inflamatórias Intestinais/tratamento farmacológico , Doenças Inflamatórias Intestinais/metabolismo , Integrinas/metabolismo
8.
Sci Adv ; 7(46): eabj0274, 2021 Nov 12.
Artigo em Inglês | MEDLINE | ID: mdl-34757794

RESUMO

Despite recent studies of immunity to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), little is known about how the immune response against SARS-CoV-2 differs from other respiratory infections. We compare the immune signature from hospitalized SARS-CoV-2­infected patients to patients hospitalized prepandemic with influenza or respiratory syncytial virus (RSV). Our in-depth profiling indicates that the immune landscape in SARS-CoV-2 patients is largely similar to flu or RSV patients. Unique to patients infected with SARS-CoV-2 who had the most critical clinical disease were changes in the regulatory T cell (Treg) compartment. A Treg signature including increased frequency, activation status, and migration markers was correlated COVID-19 severity. These findings are relevant as Tregs are considered for therapy to combat the severe inflammation seen in COVID-19 patients. Likewise, having defined the overlapping immune landscapes in SARS-CoV-2, existing knowledge of flu and RSV infections could be leveraged to identify common treatment strategies.

9.
medRxiv ; 2021 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-33791720

RESUMO

SARS-CoV-2 infection has caused a lasting global pandemic costing millions of lives and untold additional costs. Understanding the immune response to SARS-CoV-2 has been one of the main challenges in the past year in order to decipher mechanisms of host responses and interpret disease pathogenesis. Comparatively little is known in regard to how the immune response against SARS-CoV-2 differs from other respiratory infections. In our study, we compare the peripheral blood immune signature from SARS-CoV-2 infected patients to patients hospitalized pre-pandemic with Influenza Virus or Respiratory Syncytial Virus (RSV). Our in-depth profiling indicates that the immune landscape in patients infected by SARS-CoV-2 is largely similar to patients hospitalized with Flu or RSV. Similarly, serum cytokine and chemokine expression patterns were largely overlapping. Unique to patients infected with SARS-CoV-2 who had the most critical clinical disease state were changes in the regulatory T cell (Treg) compartment. A Treg signature including increased frequency, activation status, and migration markers was correlated with the severity of COVID-19 disease. These findings are particularly relevant as Tregs are being discussed as a therapy to combat the severe inflammation seen in COVID-19 patients. Likewise, having defined the overlapping immune landscapes in SARS-CoV-2, existing knowledge of Flu and RSV infections could be leveraged to identify common treatment strategies. HIGHLIGHTS: The immune landscapes of hospitalized pre-pandemic RSV and influenza patients are similar to SARS-CoV-2 patientsSerum cytokine and chemokine expression patterns are largely similar between patients hospitalized with respiratory virus infections, including SARS-CoV-2, versus healthy donorsSARS-CoV-2 patients with the most critical disease displayed unique changes in the Treg compartmentadvances in understanding and treating SARS-CoV-2 could be leveraged for other common respiratory infections.

10.
Cell Mol Gastroenterol Hepatol ; 10(3): 507-526, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32361018

RESUMO

BACKGROUND & AIMS: Crohn's disease (CD) likely represents decreased immune tolerance to intestinal bacterial antigens. Most CD patients have high titers of antibodies to intestinal commensal proteins, including the outer membrane porin C (OmpC) of Escherichia coli. METHODS: By using major histocompatibility complex II tetramers, we identified an HLA-DRB1∗15:01-restricted peptide epitope of OmpC recognized by CD4+ T cells in peripheral blood mononuclear cells from HLA-DRB1∗15:01+ healthy control (HC) and CD patients. RESULTS: The precursor frequency of these cells in CD correlated with anti-OmpC IgA titers, but did not differ from that of HCs. In both cohorts, they showed a CD161+, integrin α4ß7+ phenotype ex vivo by flow cytometry, distinct from the C-X-C Motif Chemokine Receptor 3 phenotype of autologous influenza hemagglutinin (Flu) peptide-specific T cells. The T-cell receptor α and ß chains of in vitro-expanded OmpC-specific T-cell clones often contained public amino acid sequences that were identical in cells from different patients. Expanded T-cell clones from CD subjects produced significantly less interleukin (IL)10 (P < .0001) than those from HCs, and a trend toward decreased production of the T helper 2 cell-associated IL4, IL5, and IL13 by CD clones also was seen. CONCLUSIONS: Both HCs and CD patients have detectable OmpC-specific T cells in circulation, with similar immunophenotypes and often identical T-cell-receptor sequences. However, expanded clones from patients with CD produce less of the immunoregulatory cytokine IL10, showing a selective defect in the regulatory function of intestinal microbial antigen-specific T cells in patients with CD.


Assuntos
Linfócitos T CD4-Positivos/imunologia , Doença de Crohn/imunologia , Proteínas de Escherichia coli/imunologia , Microbioma Gastrointestinal/imunologia , Porinas/imunologia , Adulto , Idoso , Linfócitos T CD4-Positivos/metabolismo , Estudos de Casos e Controles , Doença de Crohn/sangue , Doença de Crohn/microbiologia , Epitopos de Linfócito T/imunologia , Escherichia coli/imunologia , Feminino , Cadeias HLA-DRB1/metabolismo , Voluntários Saudáveis , Interações entre Hospedeiro e Microrganismos/imunologia , Humanos , Interleucina-10/metabolismo , Masculino , Pessoa de Meia-Idade , Receptores de Antígenos de Linfócitos T/metabolismo , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...